RECORRIDO POR EL SISTEMA SOLAR: VII PARTE: URANO

Urano es el séptimo planeta del Sistema Solar, el tercero en cuanto a mayor tamaño, y el cuarto más masivo. Se llama en honor de la divinidad griega del cielo Urano el padre de Cronos (Saturno) y el abuelo de Zeus (Júpiter). Aunque es detectable a simple vista en el cielo nocturno, no fue catalogado como planeta por los astrónomos de la antigüedad debido a su escasa luminosidad y a la lentitud de su órbita. Sir William Herschel anunció su descubrimiento el 13 de marzo de 1781, ampliando las fronteras conocidas del Sistema Solar hasta entonces por primera vez en la historia moderna. Urano es también el primer planeta descubierto por medio de un telescopio.

Urano es similar en composición a Neptuno, y los dos tienen una composición diferente de los otros dos gigantes gaseosos (Júpiter y Saturno). Por ello, los astrónomos a veces los clasifican en una categoría diferente, los gigantes helados. La atmósfera de Urano, aunque es similar a la de Júpiter y Saturno por estar compuesta principalmente de hidrógeno y helio, contiene una proporción superior tanto de «hielos» como de agua, amoníaco y metano, junto con trazas de hidrocarburos. Posee la atmósfera planetaria más fría del Sistema Solar, con una temperatura mínima de 49 K (-224 ºC). Asimismo, tiene una estructura de nubes muy compleja, acomodada por niveles, donde se cree que las nubes más bajas están compuestas de agua y las más altas de metano. En contraste, el interior de Urano se encuentra compuesto principalmente de hielo y roca.

Como los otros planetas gigantes, Urano tiene un sistema de anillos, una magnetosfera, y satélites numerosos. El sistema de Urano tiene una configuración única respecto a los otros planetas puesto que su eje de rotación está muy inclinado, casi hasta su plano de revolución alrededor del Sol. Por lo tanto, sus polos norte y sur se encuentran en donde la mayoría de los otros planetas tienen el ecuador. Vistos desde la Tierra, los anillos de Urano dan el aspecto de que rodean el planeta como una diana, y que los satélites giran a su alrededor como las agujas de un reloj, aunque en 2007 y 2008, los anillos aparecían de lado. El 24 de enero de 1986, las imágenes del Voyager 2 mostraron a Urano como un planeta sin ninguna característica especial de luz visible e incluso sin bandas de nubes o tormentas asociadas con los otros gigantes. Sin embargo, los observadores terrestres han visto señales de cambios de estación y un aumento de la actividad meteorológica en los últimos años a medida que Urano se acerca a su equinoccio. Las velocidades del viento en Urano pueden llegar o incluso sobrepasar los 250 metros por segundo (900 km/h).


Urano da una vuelta al Sol cada 84,01 años terrestres. Su distancia media con el Sol es de aproximadamente 3.000 millones de kilómetros (unas 20 UA) (2870990000 km). La intensidad de la luz del Sol a Urano es más o menos 1/400 que en la Tierra. Sus elementos orbitales fueron calculados por primera vez en 1783 por Pierre-Simon Laplace. Con el tiempo, empezaron a aparecer discrepancias entre las órbitas observadas y las que se habían predicho, y en 1841, John Couch Adams fue el primero en proponer que las diferencias podían deberse a la atracción gravitatoria de un planeta desconocido. En 1845, Urbain Le Verrier comenzó una búsqueda independiente en cuanto a las perturbaciones orbitales de Urano. El 23 de septiembre de 1846, Johann Gottfried Galle encontró un nuevo planeta, llamado después Neptuno, casi en la misma posición que había predicho Le Verrier.

El período rotacional del interior de Urano es de 17 horas y 14 minutos. Sin embargo, al igual que en todos los planetas gigantes, la parte superior de la atmósfera experimenta vientos muy fuertes en la dirección de la rotación. De hecho, en algunas latitudes, como por ejemplo alrededor de dos tercios de la distancia entre el ecuador y el polo sur, las características visibles de la atmósfera se mueven mucho más rápido, haciendo una rotación entera en tan poco tiempo como 14 horas.

El eje de rotación de Urano está de lado con respecto al plano del Sistema Solar, con una inclinación del eje de 97,77º. Esto produce cambios en las estaciones de un modo completamente diferente al de los demás planetas mayores. Se puede visualizar la rotación de otros planetas como peonzas inclinadas respecto al plano del Sistema Solar, mientras que Urano rota más bien como una pelota rodando inclinada. Cuando se acercan los solsticios de Urano, un polo mira continuamente en dirección al Sol mientras que el otro está en el sentido contrario. Sólo una banda estrecha alrededor del ecuador experimenta un ciclo rápido de día y noche, pero con el Sol muy bajo sobre el horizonte como en las regiones polares de la Tierra. Al otro lado de la órbita de Urano, la orientación de los polos en dirección al Sol es inversa. Cada polo recibe alrededor de 42 años de luz solar ininterrumpida, seguidos por 42 años de oscuridad. Cuando se acercan los equinoccios, el Sol se alinea con el ecuador de Urano creando un período de ciclos día-noche parecidos a los que se observan en la mayoría de los otros planetas. El equinoccio más reciente de Urano fue el 7 de diciembre de 2007.

Una consecuencia de la orientación del eje es que las regiones polares reciben durante el transcurso del año más energía solar que las regiones ecuatoriales, sin embargo, la temperatura de Urano es más elevada en su ecuador que en sus polos. El mecanismo que causa esta circunstancia es aún desconocido. No se conocen los motivos por los que el eje del planeta está inclinado en tan alto grado, aunque se especula que quizás durante su formación el planeta pudo haber colisionado con un gran protoplaneta capaz de haber producido esta orientación anómala. Otra posibilidad es que las perturbaciones gravitatorias ejercidas por los otros planetas gigantes del Sistema Solar lo hayan forzado a inclinarse de esta manera. El polo sur de Urano apuntaba casi directamente al Sol durante la época del Voyager 2 en 1986. El hecho de llamar a este polo como «sur» se debe a la definición que recomienda actualmente la Unión Astronómica Internacional, es decir que el polo norte de un planeta o satélite es el que apunta por encima del plano invariable del sistema solar, con indiferencia de la dirección en que gire el planeta. Sin embargo, a veces se utiliza otra convención, en la que los polos norte y sur de un cuerpo se definen según la regla de la mano derecha en relación a la dirección de rotación. Según este otro sistema de coordenadas, era el polo norte de Urano lo que estaba iluminado en 1986.

La masa de Urano es 14,5 veces la de la Tierra haciéndolo el menos masivo de los planetas gigantes, mientras que su densidad, 1,27 g/cm^³, lo hace el segundo menos denso entre ellos, por detrás de Saturno. Aunque tiene un diámetro ligeramente mayor que el de Neptuno (unas cuatro veces el de la Tierra), tiene menos masa. Estos valores indican que está compuesto principalmente de diversos tipos de «hielos», como agua, amoníaco y metano. La masa total de hielo en el interior de Urano no se conoce con precisión, ya que salen valores diferentes según el modelo, sin embargo, debe ser de entre 9,3 y 13,5 masas terrestres. El hidrógeno y el helio constituyen sólo una pequeña parte del total, entre 0,5 y 1,5 masas terrestres. El resto de la masa (0,5 a 3,7 masas terrestres) corresponde a material rocoso.

El modelo generalizado de la estructura de Urano consiste en un núcleo compuesto de roca con una masa relativamente pequeña, un manto de hielos, y una atmósfera formada por hidrógeno y helio, que puede representar hasta un 15% de la masa planetaria. El núcleo es relativamente pequeño, con una masa de sólo 0,55 masas terrestres y un radio de menos del 20 por ciento del total de Urano, el manto forma la mayor parte del planeta, con unas 13,4 masas terrestres, mientras que la atmósfera superior es relativamente tenue, pesa alrededor de 0,5 masas terrestres y forma el 20 por ciento final del radio de Urano. La densidad del núcleo de Urano es alrededor de 9 g/cm^3, con una presión en el centro de 8 millones de bares (800 GPa) y una temperatura de unos 5000 K. El manto helado, de hecho, no es compuesto de hielo en el sentido convencional sino que es un fluido caliente y denso que consiste de agua, amoníaco y otros volátiles. Este fluido, que tiene una conductividad eléctrica elevada, se llama a veces océano de agua-amoniaco. La composición de Urano y Neptuno es muy diferente a la de Júpiter y Saturno, con hielo predominante por encima de los gases. Esto justifica que se clasifiquen por separado como gigantes de hielo.

Mientras que el modelo descrito antes es más o menos estándar, no es el único, otros modelos también concuerdan con las observaciones. Por ejemplo, si hubiera cantidades sustanciales de hidrógeno y material rocoso mezcladas en el manto helado, la masa total de hielos en el interior sería menor, y, por tanto, la masa total de rocas e hidrógeno sería mayor. Los datos disponibles en la actualidad no permiten que la ciencia determine qué modelo es el correcto. La estructura interior fluida de Urano significa que no tiene superficie sólida. La atmósfera gaseosa hace una transición gradual hacia las capas líquidas internas. Sin embargo, por conveniencia, se describe un esferoide oblato de revolución, donde la presión es de 1 bar (100 kPa), y se designa como «superficie». Tiene un radio ecuatorial y polar de 25 559 ± 4 y 24 973 ± 20 km, respectivamente. Esta superficie se considerará como punto cero de altitud en este artículo.

El calor interno de Urano parece ser más bajo que la de los otros planetas gigantes, en términos astronómicos tiene un flujo térmico bajo. Todavía no se esclarece el por qué la temperatura interna de Urano es tan baja. Neptuno, que es prácticamente idéntico a Urano en tamaño y composición, irradia 2,61 veces más energía hacia el espacio de la que recibe del Sol. Urano, en contraste, apenas irradia calor. La potencia total irradiada por Urano en la parte infrarroja lejana del espectro (es decir, el calor) es 01:06 ± 12:08 veces la energía solar absorbida en su atmósfera. De hecho, el flujo térmico de Urano es sólo de 0.042 ± 0.047 W/m^2, que es más bajo que el flujo térmico interno de la Tierra (aproximadamente 0.075 W/m^2). La temperatura más baja registrada en la tropopausa de Urano es de 49 K (-224 ºC), haciendo de Urano el planeta más frío del sistema solar.

Una de las hipótesis para esta discrepancia es que cuando Urano recibió el impacto que provocó su elevada inclinación axial, el evento le hizo expeler la mayor parte de su calor primigénico, agotando la temperatura de su núcleo. Otra hipótesis es que existe algún tipo de barrera en las capas superiores de Urano que impide que el calor del núcleo llegue a la superficie. Por ejemplo, puede haber convección en un conjunto de capas de composición diferente, que inhiben el transporte de calor hacia arriba.

Aunque no hay una superficie sólida bien definida en el interior de Urano, la parte más exterior de la envoltura gaseosa de Urano que es accesible por sensores remotos se llama atmósfera.12 La capacidad de los sensores remotos llega aproximadamente hasta unos 300 km por debajo del nivel de 1 bar (100 kPa), con una presión correspondiente de unos 100 bar (10 MPa) y una temperatura de 320 K. La corona tenue de la atmósfera se extiende notablemente por encima de dos radios planetarios desde la superficie nominal (punto con presión de 1 bar). La atmósfera de Urano se puede dividir en tres capas: la troposfera, entre altitudes de -300 y 50 km y presiones desde 100 a 0.1 bar (10 MPa a 10 kPa), la estratosfera, en altitudes entre 50 y 4000 km y presiones entre 0.1 y 10-10 bar (10 kPa a 10 µPa), y la termosfera/corona, que se extiende desde 4.000 km hasta unos 50.000 km de la superficie. No existe la mesosfera.

Urano, como los otros planetas gigantes del sistema solar tiene un sistema de anillos. El sistema anular de Urano fue el segundo en ser descubierto en el sistema solar tras el de Saturno. Las partículas que componen los anillos son muy oscuras, y tienen tamaños desde micrómetros hasta fracciones de metro. Actualmente se conocen 13 anillos, de los cuales el más brillante es el anillo e. Todos los anillos (menos dos) son extremadamente estrechos, teniendo, algunos anillos tan sólo unos cuantos kilómetros de anchura. Principalmente está compuesto por cuerpos grandes, de 0,2-20 m de diámetro. No obstante, algunos anillos son ópticamente delgados. Los anillos son probablemente bastante recientes, las consideraciones dinámicas indican que no se formaron junto con Urano. La materia de los anillos puede haber sido parte de un satélite (o satélites) que fue hecho añicos por impactos a alta velocidad. De los numerosos trozos de escombros generados por estos impactos, sólo sobrevivieron algunas pocas partículas en un número limitado de zonas estables que corresponden a los anillos actuales.

La primera mención al sistema de anillos de Urano procede de notas de William Herschel que detallan sus observaciones del planeta en el siglo XVIII, y que incluyen el siguiente pasaje: «22 de febrero de 1789: Se sospecha de la existencia de un anillo». Esta observación suele considerarse dudosa, ya que los anillos son muy tenues, y en los dos siglos siguientes ningún observador se percató de la existencia de estos. Sin embargo, Herschel hizo una descripción detallada del anillo e en cuanto al tamaño, el ángulo con respecto a la Tierra, el color rojo, y los cambios aparentes a medida que Urano se movía alrededor del Sol. Los anillos fueron descubiertos fortuitamente el 10 de marzo de 1977 por James L. Elliot, Edward W. Dunham y Douglas J. Mink, que, utilizando el Kuiper Airborne Observatory, observaron cómo la luz de una estrella cercana a Urano se desvanecía al aproximarse el planeta. Después de analizar con detalle sus observaciones, observaron que la estrella había desaparecido brevemente cinco veces tanto antes como después de desaparecer detrás del planeta. Concluyeron que la única explicación era que había un sistema de anillos estrechos alrededor de Urano. Posteriormente, se detectaron cuatro más. Los anillos fueron observados directamente por la sonda espacial Voyager 2 en su paso por el sistema de Urano en 1986. El Voyager 2 también descubrió dos anillos tenues adicionales hasta llegar a once.

En diciembre de 2005, el Telescopio Espacial Hubble detectó un par de anillos desconocidos hasta ese momento; que posteriormente fueron bautizados como µ y v. El más grande se encuentra al doble de distancia desde el planeta que los anillos conocidos anteriormente. Estos anillos se encuentran tan lejos del planeta que fueron denominados «sistema de anillos exteriores». El Hubble también localizó dos satélites pequeños, uno de los cuales, Mab, comparte órbita con el anillo más exterior descubierto recientemente. Los anillos nuevos hacen que el número total de anillos de Urano sea de 13. En abril de 2006, imágenes de los nuevos anillos obtenidos por el Observatorio Keck mostraron los colores de los anillos exteriores: el más lejano es azul y, por otro lado, el otro es de color ligeramente rojizo. Una hipótesis sobre el color azul del anillo exterior es que está compuesto de pequeñas partículas de agua helada de la superficie de Mab que son lo suficientemente pequeñas para esparcir la luz azul. En contraste, los anillos internos del planeta se ven grises.

Antes de la llegada del Voyager 2, no se habían tomado medidas de la magnetosfera de Urano. Los astrónomos esperaban que el campo magnético de Urano estuviera alineado con el viento solar, ya que entonces se alinearía con los polos del planeta que se encuentran sobre la eclíptica.

Las observaciones del Voyager revelaron que el campo magnético es también anormal en su posición y características ya que su origen no se encuentra en el centro geométrico del planeta, y además el eje magnético está inclinado 59º respecto del eje de rotación. De hecho, el dipolo magnético está desplazado hacia el polo sur de rotación en casi un tercio del radio planetario. Esta geometría inusual tiene como resultado una magnetosfera altamente asimétrica, donde la fuerza del campo magnético en la superficie del hemisferio sur puede llegar a ser tan baja como en 0,1 gauss (10 µT), mientras que en el hemisferio norte puede llegar a los 1,1 gauss (110 µT). El campo medio en la superficie es de 0,23 gauss (23 µT). En comparación, el campo magnético de la Tierra tiene aproximadamente la misma fuerza en ambos polos, y su «ecuador magnético» es prácticamente paralelo al ecuador geográfico. El momento dipolar magnético de Urano es 50 veces el de la Tierra. El campo magnético de Neptuno también está desplazado de forma similar, lo que sugiere que esto sea una característica común de los gigantes de hielo. Una hipótesis es que, a diferencia de los campos magnéticos de los planetas terrestres y los gigantes gaseosos, que se generan dentro de sus núcleos, los campos magnéticos de los gigantes de hielo son generados por movimiento en zonas relativamente poco profundas, como el océano de agua-amoniaco.

A pesar de su alineación original, en otros aspectos, la magnetosfera de Urano es como las de los otros planetas: tiene un límite exterior situado alrededor de 23 radios por delante, una magnetopausa a 18 radios de Urano, una magnetocola completamente desarrollada y cinturones de radiación. Globalmente, la estructura de la magnetosfera de Urano es diferente de la de Júpiter y más parecida a la de Saturno. La cola de la magnetosfera de Urano sigue detrás del planeta hacia el espacio en una extensión de millones de kilómetros y está atornillada por la rotación del planeta en un largo tirabuzón.

La magnetosfera de Urano contiene partículas cargadas: protones y electrones con una pequeña cantidad de iones H^2+. No se han detectado iones más pesados. Muchas de estas partículas probablemente proceden de la corona atmosférica, que contiene temperaturas demasiado calientes. Las energías de los iones y electrones pueden llegar a 4 y 1.2 megaelectronvoltio, respectivamente. La densidad de iones de baja energía (por debajo de 1 kiloelectronvoltio) en la magnetosfera interior es alrededor de 2 cm^-3. La población de partículas está afectada fuertemente por los satélites de Urano que barren la magnetosfera dejando huecos detectables. El flujo de partículas es lo suficientemente alto para causar que se oscurezcan o se erosionen las superficies del satélite en un margen de tiempo muy rápido (en términos astronómicos) de 100.000 años. Esta puede ser la causa de la coloración uniformemente oscura de los satélites y los anillos. Urano tiene auroras relativamente bien desarrolladas, que se ven como arcos brillantes alrededor de los dos polos magnéticos. Sin embargo, al contrario de las de Júpiter, las auroras de Urano parecen insignificantes para el balance de energía de la termosfera planetaria.

Muchos investigadores argumentan que las diferencias entre los gigantes gaseosos y los gigantes helados se extienden a su formación. Se cree que el Sistema Solar se formó a partir de una bola de gas gigante que daba vueltas conocida como nebulosa presolar. La mayor parte del gas, principalmente hidrógeno y helio, formó el Sol, mientras que las partículas de polvo se juntaron para formar los primeros protoplanetas. A medida que los planetas crecían, algunos de ellos fueron capaces de agrupar suficiente materia como para que su gravedad capturara los gases restantes de la nebulosa presolar. Cuanto más gas acumulaban, más grandes se hacían; conforme su tamaño aumentaba, más gas podían acumular hasta que se llegaba a un punto crítico, y entonces su tamaño comenzó a crecer exponencialmente. Los gigantes helados, con sólo unas pocas masas terrestres de gas nebular, nunca lograron este punto crítico. Simulaciones recientes de migración planetaria sugieren que los dos gigantes helados se formaron más cerca del Sol que sus posiciones actuales, y se movieron hacia el exterior después de su formación. Esta hipótesis explica el modelo de Niza.

Deja un comentario

Tu dirección de correo electrónico no será publicada.